

-Established by the European Commission

#### Slide of the Seminar

#### <u>Restructuring of colloidal</u> <u>aggregates in turbulent flows</u>

#### Dr. Matthäus U. Bäbler

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, I – 00133 ROMA



#### ROYAL INSTITUTE OF TECHNOLOGY

#### **Restructuring of colloidal aggregates in turbulent flows**

Matthäus U. Bäbler KTH Royal Institute of Technology, Stockholm, Sweden

University of Rome Tor Vergata, Rome, Italy 2014-04-15



ROYAL INSTITUTE OF TECHNOLOGY



Primary particles  $\sim$  (10 nm – 10  $\mu$ m)

Aggregates ~ up to milimeters



ROYAL INSTITUTE OF TECHNOLOGY



Aggregation (Coagulation, Flocculation)





Aggregates ~ up to milimeters

*Picture:* Satelite image Rio de la Plata Estuary, March 10, 2010 (<u>www.eosnap.com</u>, retrieved 2014-03-12),



ROYAL INSTITUTE OF TECHNOLOGY



Aggregation (Coagulation, Flocculation)







gregates milimeters

*Picture:* H. P. Grossart, IGB, Leibniz-Institute of Freshwater Ecology and Inland Fisheries













#### **Structure and restructuring**

ROYAL INSTITUTE OF TECHNOLOGY



Hydrodynamic drag and settling velocity







Mechanical strength





- Introduction
- Structure of aggregates: aggregate fractal dimension
- Strategy for exploring restructuring
- Population balance model
- Breakup model
- Results
- Conclusions





- Introduction
- Structure of aggregates: aggregate fractal dimension
- Strategy for exploring restructuring
- Population balance model
- Breakup model
- Results
- Conclusions



#### Aggregate fractal dimension

ROYAL INSTITUTE OF TECHNOLOGY



Pair-correlation function

$$g(r) = \frac{\langle \rho(x)\rho(x+r)\rangle}{\langle \rho^2(x)\rangle} \sim r^{d_f-3}$$



#### **Aggregate fractal dimension**

ROYAL INSTITUTE OF TECHNOLOGY



Pair-correlation function

$$g(r) = \frac{\langle \rho(x)\rho(x+r)\rangle}{\langle \rho^2(x)\rangle} \sim r^{d_f-3}$$

Scaling of aggregate size

$$i \sim R_g^{d_f}$$



#### Measuring mass fractal dimension

ROYAL INSTITUTE OF TECHNOLOGY



Moussa et al., Langmuir (2007)



#### **Measuring mass fractal dimension**

ROYAL INSTITUTE OF TECHNOLOGY



Upper right: Ehrl et al., Langmuir (2008), Lower right: Ehrl et al., J. Phys. Chem. B (2009)



#### Measuring mass fractal dimension





OF TECHNOLOGY

#### Measuring mass fractal dimension



Upper right: Ehrl et al., Langmuir (2008), Lower right: Ehrl et al., J. Phys. Chem. B (2009)

Perimeter fractal dimension



#### **Alternative approach**

Consider an aggregate *i* colliding with an aggregate *j* 

*i*, *j* = number of primary particle per aggregate

$$i \sim R_g^{d_f}$$

Open aggregate  
Small 
$$d_f$$
  
Dense aggregates  
large  $d_f$   
 $R_i$   
 $i$   
 $i$   
 $j$   
 $R_j$   
 $i$   
 $j$   
 $R_j$   
 $i$   
 $i$   
 $j$   
 $R_j$ 

 $K_{ij} \sim (R_i + R_j)^3 \sim (i^{1/d_f} + j^{1/d_f})^3$ 

 $\Rightarrow d_f$  can be estimated from measuring the aggregation rate

Babler et al., Langmuir (2010)





- Introduction
- Structure of aggregates: aggregate fractal dimension
- Strategy for exploring restructuring
- Population balance model
- Breakup model
- Results
- Conclusions





# Exploring restructuring during aggregation of primary particles













- Polystyrene particles
- $d_p = 420 \text{ nm}, \phi = 2 \times 10^{-5}$
- Coagulant: Al(NO<sub>3</sub>)<sub>3</sub>, 0.16 w%
- Fully destabilized particles









- Polystyrene particles
- $d_p = 420 \text{ nm}, \phi = 2 \times 10^{-5}$
- Coagulant: Al(NO<sub>3</sub>)<sub>3</sub>, 0.16 w%
- Fully destabilized particles







- Introduction
- Structure of aggregates: aggregate fractal dimension
- Strategy for exploring restructuring
- Population balance model
- Breakup model
- Results
- Conclusions



#### **Population balance model**

$$\frac{dN_i}{dt} = \frac{1}{2} \sum_{j=1}^{i-1} K_{A,j,i-j} N_j N_{i-j} - N_i \sum_{j=1}^{\infty} K_{A,i,j} N_j$$
$$- K_{B,i} N_i + \sum_{j=i+1}^{\infty} g_{i,j} K_{B,j} N_j$$



#### **Population balance model**

ROYAL INSTITUTE OF TECHNOLOGY



- Aggregation → Saffman&Turner type [1]
- **Evolving**  $d_f \longrightarrow$  Pre-described function

[1] Babler, AIChE J. (2008), [2] Babler et al., Langmuir (2010), [3] Babler et al. J. Fluid Mech. (2008), Babler et al. PRE (2012)



#### **Population balance model**

ROYAL INSTITUTE OF TECHNOLOGY



 Light scattering model [2]

$$\frac{\langle R_g \rangle}{R_{g,p}} = \left(\frac{\sum_{i=1}^{\infty} i^{d_f(2-c)} N_i}{\sum_{i=1}^{\infty} i^{2-c} N_i}\right)^{1/2}$$

$$\frac{I(0)}{I(0)_p} = \frac{\sum_{i=1}^{\infty} i^{2-c} N_i}{\sum_{i=1}^{\infty} i N_i}$$

- Aggregation → Saffman&Turner type [1]
- Evolving  $d_f \longrightarrow$  Pre-described function
- c = correction factor
  for muliple scattering,
  important for
  - large aggregates
  - dense aggregates

[1] Babler, AIChE J. (2008), [2] Babler et al., Langmuir (2010), [3] Babler et al. J. Fluid Mech. (2008), Babler et al. PRE (2012)



## **Evolving fractal dimension**

ROYAL INSTITUTE OF TECHNOLOGY

Pre-described function evolving smoothly between two plateaus





## **Evolving fractal dimension**

 Pre-described function evolving smoothly between two plateaus



#### Initial fractal dimension





## **Evolving fractal dimension**

Pre-described function evolving smoothly between two plateaus

201 rpm

80



934 rpm

**. . . . . . . .** 

65

70

75

t (min)

120

100

80

60

40

20

0∟ 60

 $\langle R_g \rangle / R_{g,p}$ 





#### Aggregate breakup in turbulence

ROYAL INSTITUTE OF TECHNOLOGY



- $\exists$  critical stress  $\sigma_{\rm cr} = \sigma_{\rm cl}(i)$
- Instanteneous breakup
- Small, inertialless particles  $\sigma \sim \mu (\nu/\varepsilon)^{1/2}$



Babler et al. J. Fluid Mech. (2008); Babler, Biferale, Lanotte, PRE (2012)



 $\ln \sigma$ 

## Aggregate breakup in turbulence

- Critical stress depends on the aggregate properties, i.e., its "size" (i)
- Power law behavior  $\sigma_{\rm cr}(i) \sim i^{-m/2}$

 $\ln(i)$ 



Babler et al. J. Fluid Mech. (2008); Babler, Biferale, Lanotte, PRE (2012)



## **Aggregate breakup in turbulence**

OF TECHNOLOGY

- Critical stress depends on the aggregate properties, i.e., its "size" (i)
- Power law behavior







critical dissipation

Babler et al. J. Fluid Mech. (2008); Babler, Biferale, Lanotte, PRE (2012)





- Introduction
- Structure of aggregates: aggregate fractal dimension
- Strategy for exploring restructuring
- Population balance model
- Breakup model
- Results
- Conclusions



#### **Evolution of fractal dimension**

ROYAL INSTITUTE OF TECHNOLOGY





#### **Aggregate size distribution**

ROYAL INSTITUTE OF TECHNOLOGY





#### **Constant fractal dimension**

ROYAL INSTITUTE OF TECHNOLOGY





#### **Various stirring speeds**

ROYAL INSTITUTE OF TECHNOLOGY









ROYAL INSTITUTE OF TECHNOLOGY



• The onset of restucturing is more sensitive to the shear rate G





- The onset of restucturing is more sensitive to the shear rate *G*
- The duration of restructuring scales with the shear rate G



ROYAL INSTITUTE OF TECHNOLOGY



**Figure 12.** Regime map for restructuring/breakage for fully destabilized suspensions of different materials;  $a = 0.5 \ \mu m$ . The physical data for the considered materials (*E*,  $\nu$ ,  $\sigma$ ) were taken from Dominik and Tielens.<sup>21</sup>

Vanni and Gastaldi, Langmuir (2011)





- Introduction
- Structure of aggregates: aggregate fractal dimension
- Strategy for exploring restructuring
- Population balance model
- Breakup model
- Results
- Conclusions



#### Conclusions

- Restructuring, in terms of the evolution of the fractal dimension, has been explored by fitting a PBE model to a set of experimental data.
- Restructuring sets in as the aggregates reach a certain size, and it is finished before they reach the steady state size.
- The aggregate size for the onset of restructuring depends stronger than predicted by considering only stress induced restructuring. This hints to collision induced restructuring.
- Restructuring is relatively fast and its duration scales approximately with the shear rate.
- Macromixing and variations of d<sub>f</sub> among the aggregates might become relevant at high stirring speeds.



#### Acknoledgments

- Miroslav Soos, ETH Zurich
- COST Action MP0805 "Particles in Turbulence"
- Swedish Research Council (VR)